Diagnostics

Team NBB: Nanomaterial-Based Biosensors

Over the past several decades, there has been a growing need for the detection and quantification of chemical and biological species in different areas, including biomedical research, health care, agriculture, and environmental monitoring. There are several common requirements for the increasing number of biosensors in these areas: high sensitivity and selectivity, real-time and label-free detection, versatility and multianalyte detection, as well as simple integration into compact point-of-care devices.

Continuous miniaturization and recent advances in micro- and nanofabrication have led to the emergence of many nanomaterials as exciting new platforms for basic research and for applications in (opto-)electronic devices. In particular, semiconducting nanowires, carbon nanotubes, metal nanoparticles, and layered two-dimensional (2D) materials such as graphene and transition metal dichalcogenides (e.g. MoS2) have recently received much attention. These nanomaterials can more easily satisfy existing needs through improved performance, dense integration, cost reduction, or novel functionality.

Our team combines state-of-the-art nanomaterial research with biomedical know-how in order to develop a novel sensor technology platform for near-patient testing. Different nanomaterials are used to fabricate highly sensitive transducers that convert biochemical reactions into electronic or electrochemical signals. The sensor surface is chemically engineered to achieve selectivity for a wide range of analytes, including electrolytes, proteins, and blood gases. The sensor performance is validated using current gold standards such as surface plasmon resonance (SPR) or enzyme-linked immunosorbent assay (ELISA). Electronic biosensors based on nanomaterials have the ability to match the performance of the established techniques, with the advantages of low cost, simple integration, and rapid results.

Mentors

  • Dr. Michael Hein
    Head of Advanced Systems Group, Roche Diagnostics International Ltd. (Industry Mentor)
  • Dr. Reiner Schlipfenbacher
    Head Technology Portfolio Management, Chief Technology Office, Roche Diagnostics GmbH (Industry Mentor)
  • Prof. Dr. Alexey Tarasov
    University of Applied Sciences Kaiserslautern (Academic Mentor)
  • Prof. Dr. Jana Zaumseil
    Chair of Applied Physical Chemistry, University of Heidelberg (Academic Mentor)

Publications

  1. Gutiérrez-Sanz Ó, Andoy NM, Filipiak MS, Haustein N, Tarasov A.
    Direct, Label-Free, and Rapid Transistor-Based Immunodetection in Whole Serum.
    ACS Sens. 2017
  2. Filipiak MS, Rother S, Andoy NM, Knudsen AC, Grimm S, Bachran C, Swee LK, Zaumseil J, Tarasov A.
    Highly sensitive, selective and label-free protein detection in physiological solutions using carbon nanotube transistors with nanobody receptors.
    Sens. Actuators B Chem. 2017
  3. Andoy NM, Filipiak MS, Vetter D, Gutiérrez-Sanz Ó, Tarasov A.
    Graphene-Based Electronic Immunosensor with Femtomolar Detection Limit in Whole Serum.
    Adv. Mater. Technol. 2018
  4. Haustein N, Gutiérrez-Sanz Ó, Tarasov A.
    Analytical model to describe the effect of poly-ethylene glycol on ionic screening of analyte charges in transistor-based immunosensing.
    ACS Sens. 2019
  5. Gutiérrez-Sanz Ó, Haustein N, Schroeter M, Oelschlaegel T, Filipiak MS, Tarasov A.
    Transistor-based immunosensing in human serum samples without on-site calibration.
    Sensors & Actuators: B. Chemical. 2019

The research of this team is kindly sponsored by Roche.

Our Team Members

Dr. Oscar Gutierrez-Sanz

Postdoctoral Researcher

Electrochemical characterization of nanomaterial-based biosensors for multiple analyte detection.

Previous work
  • 2011–2015: PhD student with Dr. Antonio Lopez de Lacey, Bioelectrocalysis Group in the Institute of Catalysis and Petrochemistry. Functional reconstitution of redox enzymes on gold electrodes mimicking their natural environment and surface biophysical characterization, Madrid, Spain
  • 2009–2011: Research associate in the laboratory of Prof. Conrado Moreno Vivian in the Biochemistry department of Cordoba University, Spain. Nitrogen metabolism in Pseudomonas pseudoalcaligenes

Dr. Wenwei Ma

Postdoctoral Researcher

Development of immunoassays for electronic biosensors

Previous work
  • 2013-2017: PhD student at University of Lincoln, United Kingdom. Conducted research on nanoparticles and protein interaction and assembly.
  • 2012–2013: Scientist at Becton, Dickinson and Company

Dr. Kishan Thodkar

Postdoctoral Researcher

Synthesis, characterization & electrical measurements of graphene devices. Research interests include micro & nano device sensing platforms, MEMS, NEMS & MOEMS.

Previous work
  • 2017-2018: Postdoctoral researcher at the Transport at nanoscale interfaces group. Development of CVD graphene – hBN heterostructures using van der Waals approach, EMPA, Dübendorf, Switzerland
  • 2013-2017: PhD candidate at Nanoscale Hybrid Electronics group led by Prof. Michel Calame. Development of CVD graphene for quantum Hall resistance standards, University of Basel, Switzerland
  • 2011–2013: Master of Science at K.U Leuven, Belgium & Chalmers University of Technology, Sweden

Marcin Szymon Filipiak

Research Associate

Microfabrication of nanobiosensors, surface modification and electrochemical measurements

Previous work
  • 2014–2015: Assistant at the Institute of Physical Chemistry of the Polish Academy of Sciences, Warsaw, Poland
  • 20082014: Master of Science in Biotechnology Engineering, Warsaw University of Technology, Warsaw, Poland

Natalie Haustein

Research Associate

Sensor surface functionalization for reliable measurements in serum; microfluidics

Previous work
  • 2008–2015: Engineering graduate in Bioprocess Engineering, Dresden University of Technology, Germany
  • 2011–2012: Research intern at the School of Biological Science and Center for Biomimetic Sensor Science, Nanyang Technological University Singapore